Climate Change Glossary

Anthropogenic: A word to describe anything that is human-caused. 

Biodiversity: The variety of life forms across the world. For instance, areas with lots of species have more biodiversity than areas with not very many species. Organisms from single-celled to large animals interact with one another, so when biodiversity declines, so does the health of the ecosystem. For humans, in particular, the decline of biodiversity means a decline in natural resources, of which our lives depend on. 

Biodegradable: Ideally, a biodegradable product is one that can be broken down by processes like composting. However, just because a material breaks down relatively quickly compared to a non-biodegradable product doesn’t mean it is good for the environment. For example, biodegradable polyethylene is a plastic that breaks faster than other plastics, but it breaks down into microplastics that pollute our water sources and aquatic life (including the fish we eat, so those microplastics end up in us). 

Biofuel: A fuel sourced from renewable sources, which are typically plants, such as trees, corn, and sugar. These plants are burned for energy. 

Climate Change: Long term changes in the Earth’s climate that includes an increase in global temperatures, weather patterns, weather extremes, and changes to populations and ecosystems. The climate change we see today is caused by human use of fossil fuels because of land-use changes combined with the burning of fossil fuels that release Carbon Dioxide, Methane, Nitrous Oxides, and other “greenhouse gasses”. Greenhouse gases trap the heat that would typically escape our atmosphere, increasing global average temperatures. Warmer air also causes more water evaporation, which forms more clouds and causes extreme weather events. Climate change is complicated, and this description is the bare minimum, so check out our Climate Science 101 article for more.  

Carbon Dioxide: CO2 is the main greenhouse gas that drives climate change. It is the byproduct of animal respiration and other life cycles, but is also produced through any combustion reaction. This includes burning fossil fuels, wood, trash, etc. 

Carbon Footprint: The net amount of carbon (in the form of CO2, methane, and fossil fuel use) emitted by an individual, company, or during the manufacturing of a product.  

Carbon Neutral: A process where there is no net release of CO2. For a country or company to be carbon neutral, the amount of CO2 they release needs to be balanced out through carbon offsetting. 

Carbon Offsetting: You can think of this as being akin to “I ate a donut for breakfast so I’m going to eat a salad for lunch”. This is a way of compensating for emissions through funding or participating in efforts to remove CO2, methane and other human-made greenhouse gasses from the atmosphere. You can do this through investing in offset projects that work on renewable energy (i.e. wind, solar, hydroelectric), methane collection and combustion (conversion of methane to carbon dioxide, which has a lower global warming potential), destruction of industrial pollutants, land-use change and protection (avoids deforestation and promotes reforestation), and more. Make sure to research the project you are investing in to avoid scams. 

Carbon Sequestration: The process of removing CO2 from the atmosphere and storing it naturally or industrially. The “natural” way CO2 can be stored is through growing trees and other vegetation because plants use COto grow (photosynthesis). This is why avoiding deforestation and promoting reforestation is important. Carbon capture and storage is an up and coming technology where CO2 is stored underground. Unfortunately, this method is not reliable because the technology cannot yet be implemented around the world.  

Climate vs. Weather: Weather is the day-to-day, short term changes in the atmosphere that includes temperature, humidity, precipitation, cloudiness, visibility, and wind.  Climate is the weather averaged over a long period of time either for a particular place, region, or globally. Climate is usually averaged over a 30-year time period and gives us statistical information about normal weather patterns and the ranges of extremes.   

Deforestation: The permanent removal of forests, which releases massive amounts of CO2 through soil disturbance. When soil is disturbed, all the wee li’l soil microbes (bacteria, fungi, and other cellular organisms) are introduced to new food sources and they grow way faster, which releases more CO2.  

Eco-Friendly: just like sustainability, this term is vague unless defined by the company who is transparent about the processes of the product. 

Feedback Loop: This is nature’s version of a never-ending Rube Goldberg machine. Or in science, when a portion or all of a systems outputs are used as inputs that kick off another process. For example, ice typically reflects light because it is white (the same reason you’re hotter in a black t-shirt on a sunny day, because black absorbs heat while white reflects it). As ice melts in the Arctic Ocean, there is a smaller area of ice that reflects the sun’s heat back into the atmosphere. This means that heat is instead absorbed by ocean water, which heats it up and increases the melting of the remaining ice. 

Fossil fuel: Non-renewable natural resources such as coal, oil and natural gas, which are made of hydrocarbons (molecules made of hydrogen and carbon, aka dead things that have carbon in them) that have been pressurized underground over millions of years. When burned, fossil fuels create enough energy to move our cars, heat our homes, and make our clothes, but this releases much more COthan was being released to the atmosphere before the industrial revolution. 

Global Average Temperature: the mean surface temperature of the earth. This is different from local temperatures because the global average temp is found through thousands of satellite measurements, a network of over 3,000 temperature observation stations, and sea surface temperature measurements taken by merchant ships around the world. These measurements are averaged to find the Global Average Temperature. 

Global Warming vs. Climate Change: These two terms are often used interchangeably, but they shouldn’t be. Global Warming describes the increase of Earth’s average surface temperature due to human-made greenhouse gas emissions, while Climate Change refers to long term changes in Earth’s climate. Climate change includes temperature, changes in weather patterns, variation in snow-pack, sea-level changes, and more. 

Global Warming Potential: The warming effect of each greenhouse gas. For example, methane has a warming effect 23 times higher than carbon dioxide. That’s why carbon offsetting projects include turning methane into CO(see Carbon offsetting for more information). 

Greenhouse Gasses: Natural and industrial gasses that trap heat from the Earth and warm the Troposphere (the atmospheric layer closest to earth). These gasses include Carbon dioxide (CO2), Water Vapor (H2O), methane (CH4), Nitrous Oxide (N2O/ NOx), Ozone (O3), and more. Through industrialization, we have exponentially increased these gas concentrations in the atmosphere.  

Greenhouse Effect: The insulating effect of natural and industrial gasses. When light from the sun reaches the planet, it bounces back out as infrared heat. The accumulation of greenhouse gasses causes global temperatures to rise because they absorb heat that would typically bounce back out of our atmosphere.  

Greenwashing: The practice of making an unsustainable product appear eco-friendly. Below are common greenwashing terms. 

Methane: CH4is a major greenhouse gas that is the main compound of ”Natural Gas”. It is also a byproduct of cow respiration, which is a major source of atmospheric methane that continues to rise as world populations rise and meat demand increases. Fun Fact: cow methane isn’t from their farts or burps, but from their breath. They actually can’t burp due to the design of their digestive system. 

Mitigation: Actions taken to reduce or prevent greenhouse gas emissions. 

Non-Toxic: this is an unregulated term. Therefore, one toxic chemical can be traded for another and be called non-toxic. Through manufacturing processes, all chemicals end up polluting water or soil because they can escape containment throughout the creation, transportation, and use of the chemical. 

Ocean Acidification: The ocean has the ability to absorb excess COfrom the atmosphere, which in one sense is great because it acts as a buffer to climate change. However, when water and CO2 mix, it creates Carbonic Acid, which makes ocean water more acidic. This affects marine life by killing coral reefs (which are home to many economically important fish) and prevents marine animals from building shells and skeletal structures (also affecting economically valuable organisms, such as oysters). 

Pre-Industrial Levels of CO2: The Industrial Revolution introduced fossil fuel combustion to the western world, which allowed our lives to become exponentially more convenient. Pre-Industrial CO2 levels were about 280 parts per million (ppm) and were 412.4 ppm as of December 16, 2019. We can find historical CO2 levels by analyzing the air trapped in ice cores

Recyclable: Ideally, a recyclable product is broken down and used to make “new” products. However, while many materials are technically recyclable, recycling them is not practical. Most recyclable materials are not actually recycled because it costs too much money or requires even more fossil fuels to recycle them.  

Reforestation: Replanting trees in areas that were once a forest. This increases carbon sequestration. 

Renewable Energy: Energy created from sources that can be replenished in a short period of time. Common renewable energy sources include wood, water movement (dams using water to generate power), geothermal (heat within the earth), wind, and solar. 

Tipping Point: A threshold of change that will have irreversible effects once we pass it. Tipping points common in media include exceeding 2 oC of global temperature rise and ice collapse. On top of this, a tipping point in one ecosystem can lead to a tipping point in another ecosystem creating a cascading effect across the globe.

Sea-Level Rise: this is caused by two main factors. First, as global temperatures rise, glaciers melt and release more water into the oceans. At the same time, as water gets warmer it expands.  Since the early 1990’s, global sea levels have risen 2.6 inches and continue to rise about 1/8th of an inch per year. This is dangerous for coastal communities whose homes and livelihoods are threatened by this rise. More water and higher temperatures also cause an increase in evaporation, which increases cloud formation, which changes weather patterns and is why we can have increased rain in one area and severe droughts in another. 

Sustainability:  Environmentally, this is the avoidance of the depletion of natural resources in order to maintain ecological balance. This is vague, so a company needs to define its own sustainability standard and be transparent about the tradeoffs involved. Defining this will include knowing sources of all materials and supply chain emissions. 

If there are additional words or a term you would like defined, fill out the form below!

Author: OAP

Katie Boué is a Cuban-American outdoor advocate, freelance writer + social media expert, professional adventurer, climber, public speaker, former van-dweller, and public lands wonk. She is Miami-raised and traded flat Florida swamps for a life of exploring mountains, camping in the desert and playing in the snow. Boué currently lives in Salt Lake City, UT with her partner Brody Leven and dog named Spaghetti.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.